

How to Reduce Sheet Metal Design Risks and Production Costs

LaShawn LeBaron, Estimating Team Lead, Protolabs

Agenda

- 1. Materials
- 2. Laser Cutting and Punching
- 3. Forming
- 4. Hardware
- 5. Finishes
- 6. Tolerances

Sheet Metal Fabrication

Protolabs now offers sheet metal fabrication through Rapid, following the 2017 acquisition.

Sheet Metal Fabrication Process

- A manufacturing method using forming
- Starts with flat material and bend could be added if needed.
- Review process steps to reduce risks in part design:
 - Materials
 - Laser cutting
 - Forming
 - Hardware
 - Finishes

Technical Information

CUSTOM PROTOTYPING:

- 1-10+ parts
- Shipped in as fast as 3 days

LOW-VOLUME PRODUCTION:

- 10-1,000+ parts
- Shipped is as fast as 7 work days

MAX. PART SIZE:

• 39" x 47"

COMMON APPLICATIONS:

- Large geometries
- Prototype box builds and end-use components
- Assemblies and custom finishes

FINISHING OPTIONS:

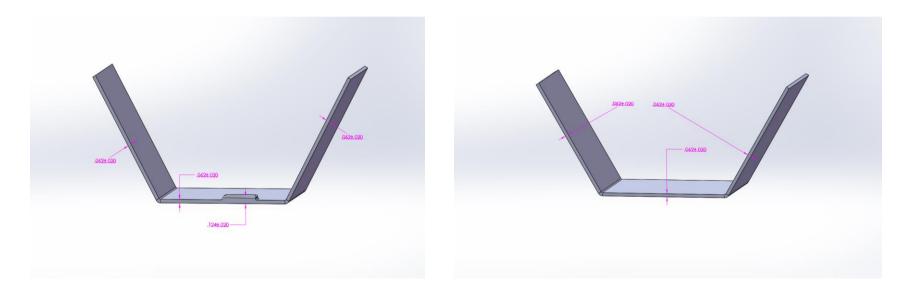
- Powder coating (stock colors)
- Chromate
- Anodizing
- Silk screening
- MIG/TIG
- Hardware insertion
- Riveting *Up to 4 components*

Procedural Overview

Ø

Material Options

- Material options include steel, aluminum, copper, and brass
- Standard material thicknesses between 0.024" and 0.134"


Gauge	Steel non-RoHS coated steel			Stainless steel		Aluminum		Copper		Brass
	CRS	Galvanneal	Galvanized	304	316	5052	6061- T6	C101	C110	CDA260
24	0.024	0.024	0.024	0.024	0.024	0.020		0.020	0.020	0.020
22		0.029	0.029			0.025	0.025	0.025	0.025	0.025
20	0.036	0.036	0.036	0.036	0.036	0.030	0.030		0.032	0.032
19	0.042							0.040	0.040	0.040
18	0.047	0.048	0.048	0.047	0.047	0.040	0.040	0.050	0.050	0.050
16	0.059	0.060	0.060	0.059	0.059	0.050	0.050	0.062	0.062	0.062
14	0.074	0.075	0.075	0.074	0.074	0.062	0.062	0.080	0.080	0.080
13	0.089	0.089	0.089	0.089	0.089			0.090	0.090	0.090
12	0.104	0.104	0.104	0.104	0.104	0.080	0.080			
11	0.119	0.119	0.119	0.119	0.119	0.090	0.090	0.125	0.125	0.125
10						0.100	0.100			
8						0.125	0.125			

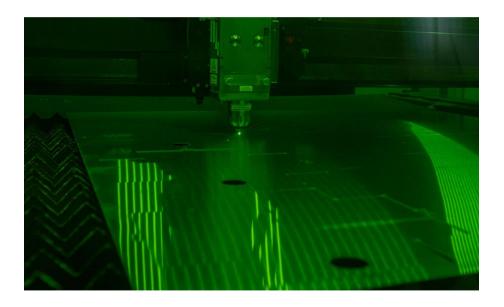
Note: Material thickness is listed in inches

Injection Molding / Sheet Metal Fabrication / CNC Machining / 3D Printing

Design Tip: Uniform Wall Thickness

- Manufactured from a single sheet
- Must maintain uniform material thickness

Injection Molding / Sheet Metal Fabrication / CNC Machining / 3D Printing


Cutting Operations

Laser

 Focused light shielded by a gas is directed through the sheet

Punching

- Punch features are achieved by using a die tool and removing/ stretching the material to achieve the specified feature.
- We can use multiple punch tools on the same part if the direction is the same or the tools specify opposite directions.

Cutting Equipment

- Laser: IPG Laser Cube
- Punching: Murata

Cutting: Best Fits and Implications

Laser

- Standard sheet metal flat patterns
- Thru holes/cut features
- Longer/larger parts
- Curved features

Punch

- Formed geometries (louvers, bridge lances)
- Countersinks
- Standard tooling sizes
- Square corners

Design Tip: Dealing with Sharp Edges

- Standard process is to deburr customer parts post laser operations
- We deburr to a standard edge break.
- Save time and cost by following standard procedure

Forming

- We use press break machined to form our parts
- A press brake uses hydraulic pressure to force material between two dies.

Press Brake Forming

Bump Forming

- Forms multiple smaller radius bends that accumulate to a non-standard radius
- Can be time consuming
- This will leave die marks roughly every .010" of the bend.

Air Bending

- The part will hit the press break tooling in three places.
- Inside bend radius is largely controlled by the size of the V opening of the bottom die

Press Brake Forming Equipment

Two primary pieces of equipment:

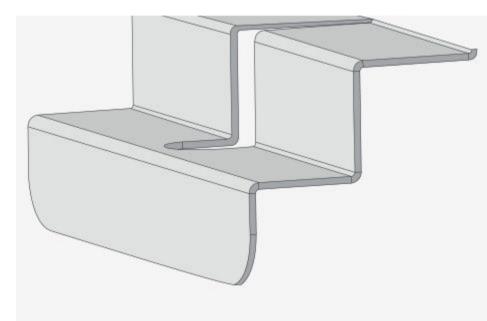
- Cincinnati
- Toyokoki
- Bystronic

Press Brake: Best Fit and Implications

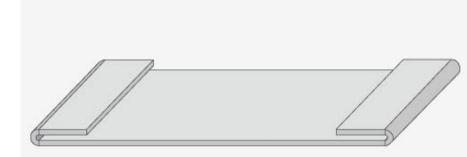
Best fit geometries:

- Enclosures, chassis, brackets
- Challenging geometries:
- Wrap-arounds, non-standard or large bend radii.
- Tear drop hems and barrel hinges.

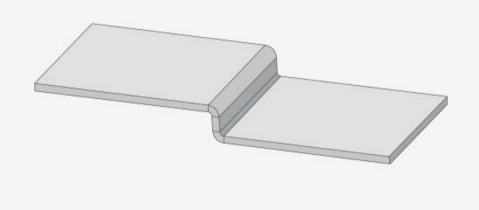
Implications:


- Clearance for tooling.
- Dissecting components into assemblies.
- Tolerances can add layer of complexity

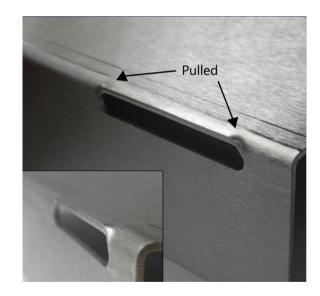
Design Tips: Formed Geometries


Bends

- Manufactured using sheet metal press breaks.
- Preferred bend radius is 0.030".
- Other inside bend radii available—some will drive economic tradeoffs to part
- Please keep the same bend radii across all bends when possible.


Hems

- Fold outs at the end of a part that create a round edge
- Can be used for stiffening
- Can form both open and closed hems
- Tolerance depends on radius, material thickness, and features in proximity to the hem
- Recommended minimum inside diameter equals material thickness and return length is 4x the thickness


Offsets

- Used to create a Z shape profile
- Height tolerance is
 +/- 0.012" top of sheet/form
- Preferred offset is 0.030"
- Other options are available, but add economic tradeoff in part.

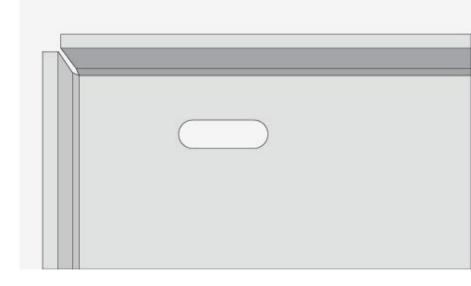
The 4x Rule

- 4x material thickness needed between most sheet metal features and the bend.
- This rule will change as material thickness and bend radii increase.
- Flanges must be 4x material thickness to achieve a full 90 degree bend.
- Hem length must be 4x thickness in length
- Hole features must be 4x thickness away from bend line to prevent deformation

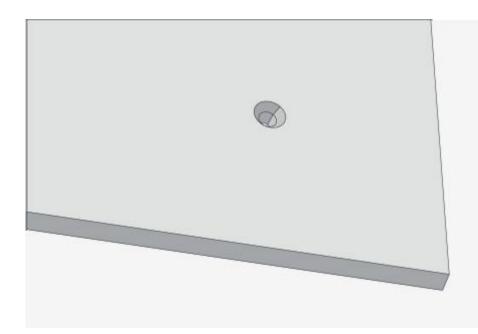
There are exceptions to every rule, but the rule saves money and reduces risk

Bend Reliefs

- Implemented where bend extends on an edge
- Bend notch added to prevent tearing
- No deeper than material thickness plus bend radius
 - Must be a minimum of .030" wide



Injection Molding / Sheet Metal Fabrication / CNC Machining / 3D Printing


Holes and Slots

- Minimum of material thickness in diameter
- If material is 0.036 in. or thinner, the hole should be 0.062 in. from the material edge
- Remember the 4x rule for placement near bends.
- Keep spacing to manufacturer's specs if hardware inserts are required

Counter Sinks

- Both machined and formed countersinks available
- We use drill press tooling and could punch the feature if the countersink is standard.

Hardware

Clinch Fasteners

Clinch fasteners are permanently installed using a press. The hardware is pressed into a hole and the material that flows in response to this force creates a permanent mechanical bond between the sheet and fastener.

Types

- Nuts
 - (CLS/S/SP)
- Studs
 - (external threaded)
 - (FHS/FH/FH4)
- Stand-off
 - (internal thread)
 - (BSOS/BSO/BSO4)
- Pins
 - (unthreaded studs)
 - (TPS/TP4)

Clinch hardware must be harder material and not have galvanic reaction with sheet material

	Al	Steel	300 SS	400 SS
AI & Softer	0	Х	0	0
Steel	Х	0	0	0
Stainless	Х	Х	Х	0

Injection Molding / Sheet Metal Fabrication / CNC Machining / 3D Printing

Finishing

Powder Coating and Silk Screening

- Available in compliance with government regulations
- 30 standard powder coat options readily available
- Silk screen can be color-matched to any pantone number

Tiger Drylac 89/71530 Light Gray Textured RAL 7035	Tiger Drylac 49/42310 Dark Blue RAL 5013	Tiger Drylac 49/00530 Sky Blue RAL 5015
Tiger Drylac 49/72020 Telegray 4 RAL 7047	Tiger Drylac 49/22580 Signal Yellow RAL 1003	Tiger Drylac 089/41050 Azure Blue Textured RAL 5009

Injection Molding / Sheet Metal Fabrication / CNC Machining / 3D Printing

Plating

- Effective way to prevent corrosion and improve aesthetics
- Lowest risk plating options are Anodize (Black and Clear), Chromate (Yellow and clear), Zinc (Clear and Yellow), and Passivate (cleaning wash)

Туре	Aluminum	Steel	Stainless Steel
Anodize	MIL-A-8625	-	-
Chromate	MIL-DTL- 5541	-	-
Zinc	-	ASTM-B-633	
Passivation	-	-	ASTM-A967

Plating is not a cosmetic finish

Injection Molding / Sheet Metal Fabrication / CNC Machining / 3D Printing

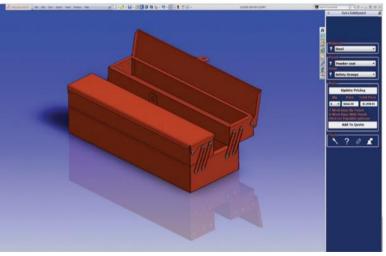
Tolerances

- Machining tolerances

 can be summed up quickly,
 directly relative to the
 number of significant figures
 in the dimension
- Sheet metal tolerances, however, can take numerous pages to cover all aspects

Unless otherwise specified, dimensions are in inches					
Angles	.X	.XX	.XXX		
+/-5°	+/- 0.02	+/-0.01	+/- 0.005		

Do not design sheet metal parts to machining tolerances, especially if designing mating components


Have a Model Ready to be Quoted?

A myRAPID account allows you to get quotes and/or submit parts for manual quoting with most 3D CAD files, have on-going access to your quotes, and more.

rapidmanufacturing.com/quote

eRapid

- Instant part cost for sheet metal
- Design feedback
- Budgetary or order now
- Free add-in download for SolidWorks

THANK YOU

-

PRESENTER: LASHAWN LEBARON lashawnlebaron@protolabs.com