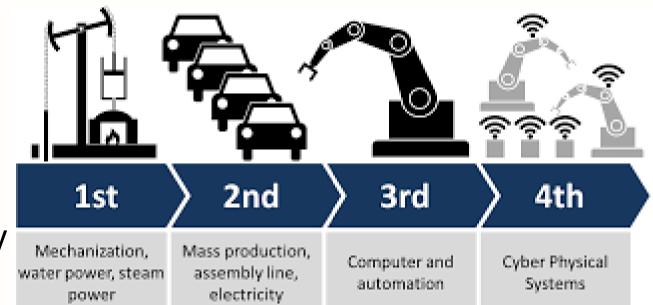
MAY 14-16, 2019

EASTERN STATES EXPOSITION WEST SPRINGFIELD, MA easteconline.com

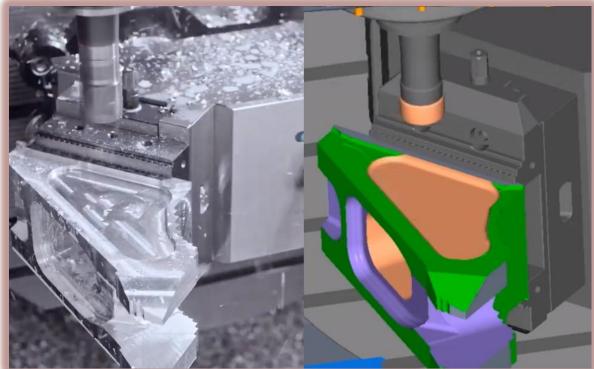
Official Media Partner

Simulation Advancements in "Industry 4.0" Serge Viau / Sales Representative / CGTech


Who is doing simulation that includes the machine tool in their manufacturing process?

If you are, you are implementing (knowingly or not) a form of 'Digital Twin' that relates to Industry 4.0

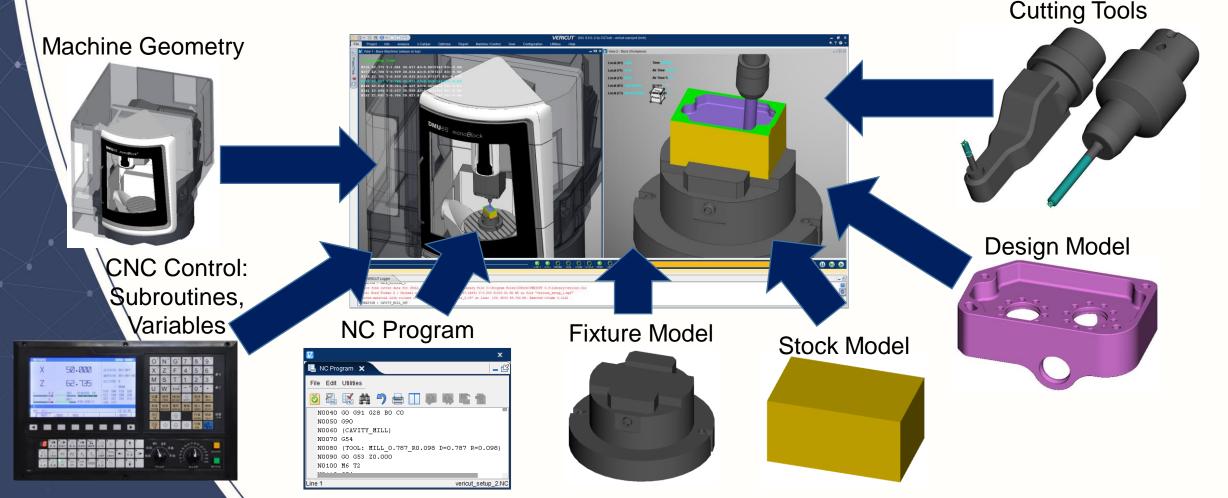
eastec[®] Industry 4.0


- Current trend of automation and data exchange in mfg technologies
- Referred to as 4th industrial revolution
- 4 design principles:
 - Interconnection
 - Information transparency
 - Technical assistance
 - Decentralized decisions

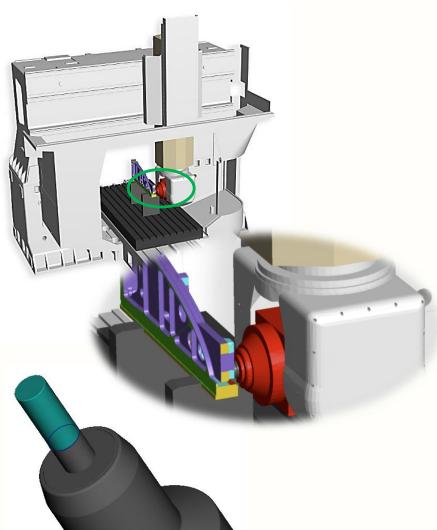
https://en.wikipedia.org/wiki/Industry_4.0

Digital Twin

- Digital replica of a physical asset
- Bridges the physical and virtual world
- Connection established generating real time data using sensors on physical device

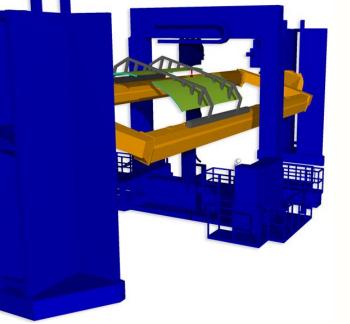


https://en.wikipedia.org/wiki/Digital_twin


How does this relate to simulation?

• Culmination of all necessary data needed to machine a part

Digital Twin for NC Simulation

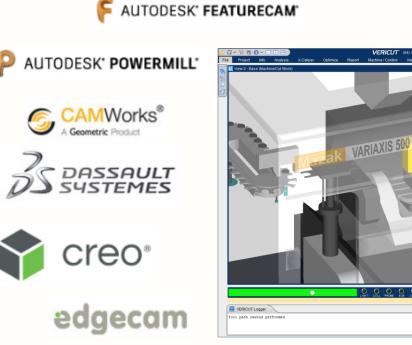

- Mission critical models that exactly match part(s) on the shop floor
 - As realistic geometry as we can get
- Examples:
 - Machine geometry is accurate, but does not need every nut, bolt, screw...
 - Design, stock, fixture need details/accuracy
 - Cutting tools, need accuracy but not fluting on cutter

Not just for CNC Machining...

- Simulation can apply to:
 - EDM Die Sinking
 - Additive
 - Grinder Dressing
 - Drilling & Fastening
 - Composite Programming
 - Composite Simulation
 - Robot Simulation

Data Availability/Accessibility

- Part of Industry 4.0 (Principle 1) Interconnection (Interoperability)
- Data available throughout enterprise/suppliers
- Challenges
 - Data/models not available
 - Vendor will not supply
 - Data is inaccurate


CNC Machine Data

- Requires knowing the machine
- Building a machine that works like the real machine can be challenging
- Technology Partners

Connectivity to CAD/CAM Systems

- Reuse available data and information via interfaces
- Already setup from previous applications
- Removes
 human error

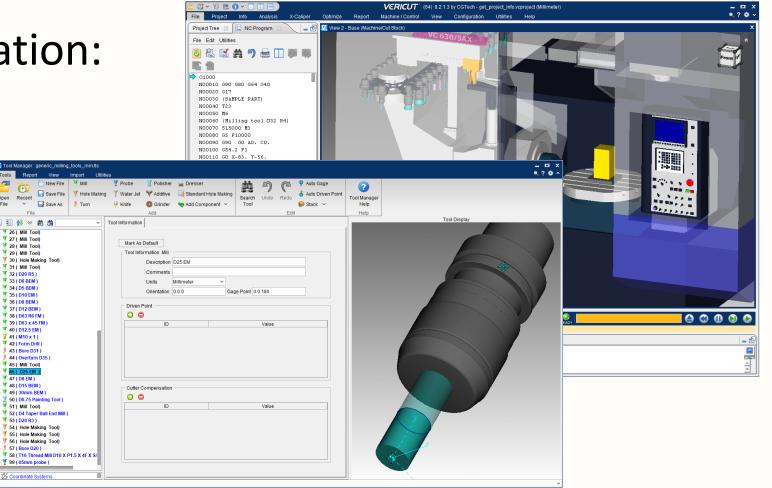
Advantages with Interfaces

🏋 27 (Mill Too

7 32 (D20 R5 33 (D6 BEN

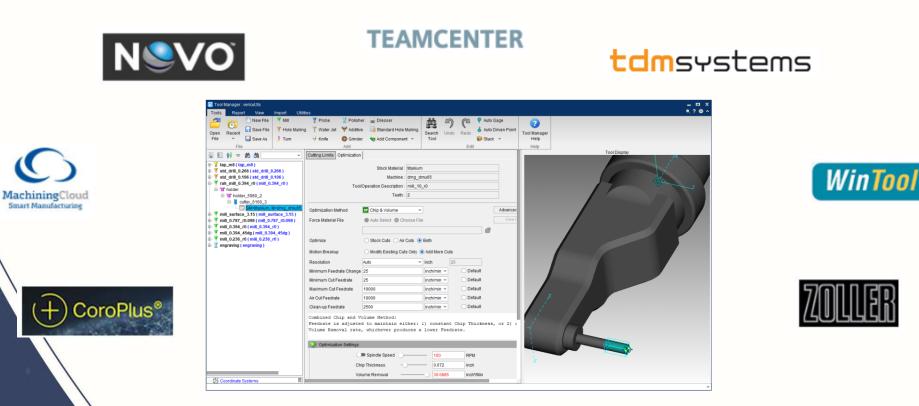
34 (D5 BEN

7 35 (D10 EM

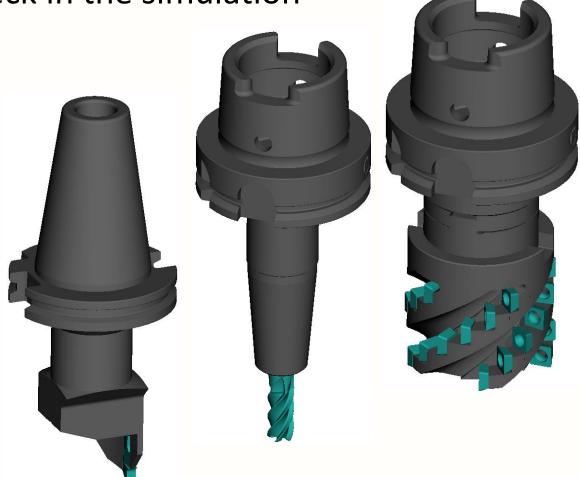

¥ 36 (D8 BEN

🏋 37 (D12 BEM

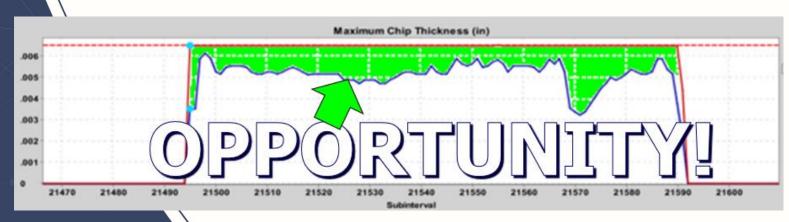
🦉 41 (M10 x 1)

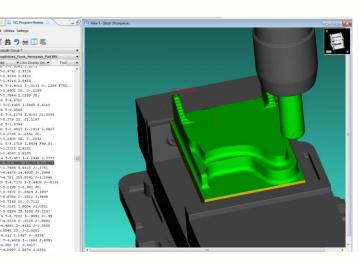

46 (D25 EN ¥ 47 (D8 EM ¥ 48 (D15 BEN

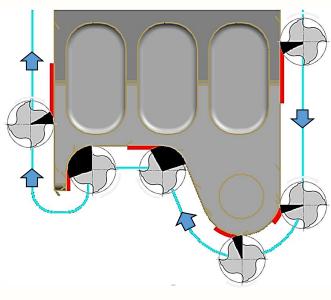
- Sets up a simulation:
 - Fixture
 - Stock
 - Design
 - NC Program
 - Work offsets
 - Tooling


Connecting/Reusing Tooling Data

- Utilizing data from data management systems
- Tooling data and cutting parameters reused from various systems

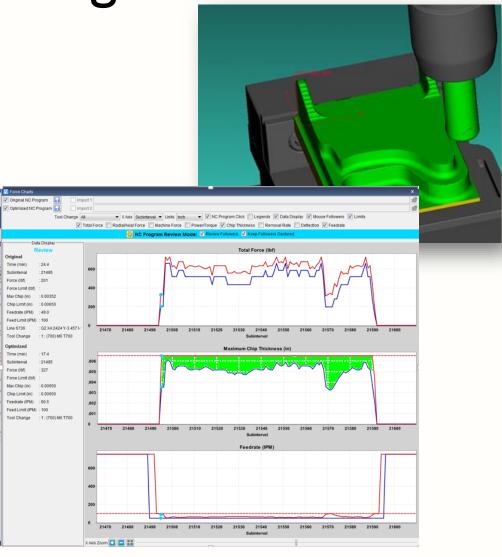

Tooling Data


- Tooling data can be read to check in the simulation
 - Tool assembly geometry
 - Gage length/Driven Point
 - Spindle Speed
 - Feed rate
 - Step over/step depth
 - Chip thickness
- Check parameters against simulation results
- Then use tool data to optimize the toolpath



Optimizing Toolpaths

- Part of Industry 4.0 (Principle 4) Decentralized decisions
- Non optimal feed rates in NC programs
- Leaves cost savings on the shop floor
- Does not take full advantage of cutting tool capability



Original vs. Optimized NC Program

	V Compare NC Progra							
	NO Provent		a anti-article					
	NC Program I)	уре	G-Code Data					
	Original NC Program		Optimized NC Pro-					
	'art\Okuma Event Dec 2017 Davala - mastercam\Unoptimized_Force_Aerospace_Part.MIN	3	Unoptimized_Force_Aepace_Part.opti					
	X4.5651 1-3.2365 12552 JU.	_	X4.5651 I-3.2365 12552 JU.					
6	X4.4577 Y-3.2603 IO. J2552	•	X4.4577 Y-3.2603 IO. J2552					
	G1 X4.4361 Y-3.2716 Z.9434 F49.01		G1X4.4361Y-3.2716Z.9434F750.					
	X4.3016 Y-3.3725 Z.9291		X4.3016 Y-3.3725 Z.9291					
	X4.2756 Y-3.4063 Z.9255		X4.2756Y-3.4063Z.9255F100.					
			G2X4.2593Y-3.4318I-1.2443J0.7786					
	G2 X4.2424 Y-3.457 I-1.2449 J.7777		G2X4.2424Y-3.457I-1.228J0.8041F90.5					
	G3 X4.2403 Y-3.4602 I.0619 J0423		G3 X4.2403 Y-3.4602 I.0619 J0423					
			X4.1992Y-3.5266I0.5324J-0.375F54.2					
			X4.1423Y-3.6718I0.5734J-0.3085F51.9					
	X4.1273 Y-3.7485 I.5323 J3751		X4.1273Y-3.7485 <u>I0.6303J-0.1633F54.2</u>					
\sim			X4.1146Y-3.8353I4.4908J-0.6998F61.9					
\geq			X4.1036Y-3.9224I4.5035J-0.613F58.3					
			X4.0765Y-4.2722I4.5145J-0.526F57.6					
			X4.074Y-4.3599I4.5416J-0.1761F58.3					
	X4.0731 Y-4.4476 I4.4908 J6998		X4.0731Y-4.4476 <u>I4.5441J-0.0884F60.5</u>					
			<u>X4.0713Y-4.5321I55.8392J-1.2065F61.9</u>					
11	X4.0682 Y-4.701 I55.8392 J-1.2046		X4.0682Y-4.701 <u>I55.8409J-1.122F60.5</u>					
	G2 X4.0683 Y-4.7172 I-2.4409 J0162		G2X4.0683Y-4.7172 <u>I-2.4409J0162F61.9</u>					
			X4.0667Y-4.805I-2.441J0.F60.5					
1			X4.062Y-4.8926I-2.4394J0.0878F59.1 X4.0431Y-5.0671I-2.4347J0.1754F58.3					
/			X4.0289Y-5.1537I-2.4158J0.3499F59.1					
6	X4.0117 Y-5.2398 I-2.441 JO.		X4.0117Y-5.2398I-2.4016J0.4365F60.5					
	X3.6492 Y-5.7672 I8424 J.1907		X3.6492Y-5.7672I8424J.1907F61.9					
	X3.2671 Y-5.8786 I3821 J.5998	Ξ	X3.2671Y-5.8786I3821J.5998F65.3					
			X3.1106Y-5.8612I0.J0.7112					
			X3.0348Y-5.8396I0.1565J0.6938F67.4					
			X2.9618Y-5.8097I0.2323J0.6722F65.3					
			X2.8925Y-5.772I0.3053J0.6423F63.7					
\geq	X2.8279 Y-5.7268 IO. J.7112		X2.8279Y-5.7268 <u>I0.3746J0.6046F61.9</u>					
			X2.6262Y-5.5354I0.8055J1.051F60.5					
			X2.5159Y-5.3862I1.0072J0.8597F61.9					
Ż	X2.4689 Y-5.3062 I.8054 J1.0511		X2.4689Y-5.3062 <u>I1.1174J0.7104F57.6</u>					
			X2.3978Y-5.1833I9.3902J5.513F60.5					
			X2.3628Y-5.1214I9.4613J5.39F61.9					
8	X2.3283 Y-5.0594 I9.3896 J5.5141		X2.3283Y-5.0594 <u>19.4963J5.3282F57.6</u>					
X			<u>G3X2.235Y-4.9103I-0.949J-0.4901F54.2</u>					
	C2 V2 0524 V 4 7202 T 0401 T 40		X2.1184Y-4.7785I-0.8557J-0.6393F56.7					
	G3 X2.0524 Y-4.7202 I9491 J49		G3X2.0524Y-4.7202 <u>I-0.7391J-0.7711F54.2</u>					
			X1.9825Y-4.6744I-0.6325J-0.8893F58.3 X1.9093Y-4.6341I-0.5626J-0.9351F57.6					
			X1.8332Y-4.5995I-0.4894J-0.9754F55.5					
			X1.6743Y-4.5483I-0.4133J-1.01F54.8					
	X1.5923 Y-4.5319 I6325 J8893		X1.5923Y-4.5319I-0.2544J-1.0612F56.7					
	X1.177 Y-4.4883 I4153 J-1.9565		X1.177Y-4.4883I4153J-1.9565F57.6					
		Ŧ	V1 0021V-4 4001T0 J-2 0001F60 5					

Design Model vs. Cut Stock

Sharing Data

- Part of Industry 4.0 (Principle 3) Technical assistance
- Simulation results used many ways
- Generate reports
- Show simulation to shop floor

Reports and Reviewer

					Pad Local X Local Y	vericut 1.317 0.1969 3.4335	
	Programmer:	Jeff Voegele	January 2, 2018	3:30:26 PM		0	
	Part#:	Material:	Setup/Operation:	Machine:		0	
	ABC123	Titanium	SETUP_1	DMG Lasertec 6	35	0	
	Vew 2-Base (Machine Cut Store	a	Vew 1 - Stock (Nongelos)		Image: state sta	0 0.03:27 20000.CW 238:22 IPM FLOOD 4 00 0fmm flat end mil CCW ABSOLUTE XY 0 RPM OFF OFF	
Tool ID Tool Des	scription Cutter Cutter	Flute Optimized By	Original Optimized 1	Time Diff Errors V	Varnings		

Tool ID	Tool Description	Cutter Diameter	Cutter Height	Flute Length	Optimized By	Original Time	Optimized Time	Time Diff %	Errors	Warnings
MILL_0.787_R0.078	MILL_0.787_R0.078	0.5079	0.3972	2	No Optimization	0:04:57	0:04:57	0%	6	0
						0:04:57	0:04:57	0%	6	0

Utilizing data from CNC Machines

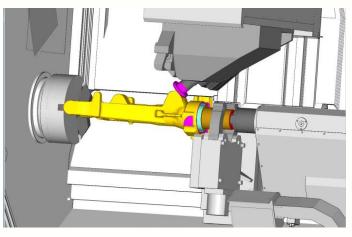
- CNC machines stream data telling what the physical machine is actually doing
- Part of Industry 4.0
 - Principle 2) Information transparency
 - Principle 3) Technical assistance
- Streaming data used for:
 - Analytics
 - Calculations
 - Shop 'health'

Utilizing data from CNC Machines

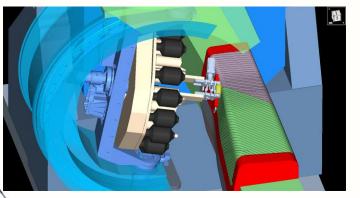
- Protocols/Methods to exchange data between shop floor equipment and software applications
 - I.e. Machine Monitoring
- Part of IoT internet connectivity
- Many possibilities
 - MTConnect
 - OPC UA(Open Platform Communications Unified Architecture)
 - FANUC CNC: FOCAS, FASOPC
 - umati (Universal Machine Tool Interface)

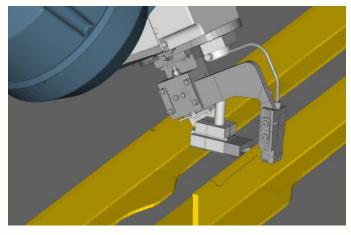
NC Simulation saves \$\$\$

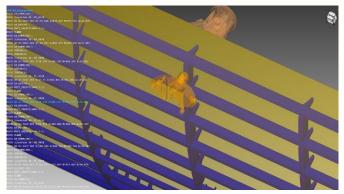
- Industry 4.0, Digital Twin, Simulation are significant to your mfg processes
- Can simulate real world issues before part is run on shop floor
- Simulation software's connectivity in the NC Manufacturing environment
- What data to seek, what to avoid, and why
- How simulation interoperability and "good" data help
- How physics-based software tools help with optimization and analysis


CGTech

- Privately held and 100% self financed.
- Established in 1988
- World leader in NC verification
- Largest group of CNC machining experts in the world
- Headquartered in Southern California with offices in 12 countries
 CGTECH
 VERICUT®


The power of CGTech expertise is available to your company


Castec[®] VERICUT software improves automated processes in several domains.


Machining Simulation

Automated Composite Layup

Trimming Simulation

Assembly Drilling & Fastening

Questions